3.2.2 \(\int \frac {\sqrt {a+b x+c x^2}}{d+e x+f x^2} \, dx\) [102]

3.2.2.1 Optimal result
3.2.2.2 Mathematica [C] (verified)
3.2.2.3 Rubi [A] (verified)
3.2.2.4 Maple [B] (verified)
3.2.2.5 Fricas [F(-1)]
3.2.2.6 Sympy [F]
3.2.2.7 Maxima [F(-2)]
3.2.2.8 Giac [F(-2)]
3.2.2.9 Mupad [F(-1)]

3.2.2.1 Optimal result

Integrand size = 27, antiderivative size = 431 \[ \int \frac {\sqrt {a+b x+c x^2}}{d+e x+f x^2} \, dx=\frac {\sqrt {c} \text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{f}-\frac {\sqrt {c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )+f \left (2 a f-b \left (e-\sqrt {e^2-4 d f}\right )\right )} \text {arctanh}\left (\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} f \sqrt {e^2-4 d f}}+\frac {\sqrt {c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )+f \left (2 a f-b \left (e+\sqrt {e^2-4 d f}\right )\right )} \text {arctanh}\left (\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} f \sqrt {e^2-4 d f}} \]

output
arctanh(1/2*(2*c*x+b)/c^(1/2)/(c*x^2+b*x+a)^(1/2))*c^(1/2)/f-1/2*arctanh(1 
/4*(4*a*f+2*x*(b*f-c*(e-(-4*d*f+e^2)^(1/2)))-b*(e-(-4*d*f+e^2)^(1/2)))*2^( 
1/2)/(c*x^2+b*x+a)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2-(-b*f+c*e)*(-4*d*f+e 
^2)^(1/2))^(1/2))*(f*(2*a*f-b*(e-(-4*d*f+e^2)^(1/2)))+c*(e^2-2*d*f-e*(-4*d 
*f+e^2)^(1/2)))^(1/2)/f*2^(1/2)/(-4*d*f+e^2)^(1/2)+1/2*arctanh(1/4*(4*a*f- 
b*(e+(-4*d*f+e^2)^(1/2))+2*x*(b*f-c*(e+(-4*d*f+e^2)^(1/2))))*2^(1/2)/(c*x^ 
2+b*x+a)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2+(-b*f+c*e)*(-4*d*f+e^2)^(1/2)) 
^(1/2))*(c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2))+f*(2*a*f-b*(e+(-4*d*f+e^2)^(1/ 
2))))^(1/2)/f*2^(1/2)/(-4*d*f+e^2)^(1/2)
 
3.2.2.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.59 (sec) , antiderivative size = 539, normalized size of antiderivative = 1.25 \[ \int \frac {\sqrt {a+b x+c x^2}}{d+e x+f x^2} \, dx=\frac {2 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c} x}{-\sqrt {a}+\sqrt {a+x (b+c x)}}\right )+\text {RootSum}\left [c^2 d-b c e+b^2 f+2 \sqrt {a} c e \text {$\#$1}-4 \sqrt {a} b f \text {$\#$1}-2 c d \text {$\#$1}^2+b e \text {$\#$1}^2+4 a f \text {$\#$1}^2-2 \sqrt {a} e \text {$\#$1}^3+d \text {$\#$1}^4\&,\frac {-c^2 d \log (x)+b c e \log (x)-b^2 f \log (x)+a c f \log (x)+c^2 d \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right )-b c e \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right )+b^2 f \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right )-a c f \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right )-2 \sqrt {a} c e \log (x) \text {$\#$1}+2 \sqrt {a} b f \log (x) \text {$\#$1}+2 \sqrt {a} c e \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}-2 \sqrt {a} b f \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}+c d \log (x) \text {$\#$1}^2-a f \log (x) \text {$\#$1}^2-c d \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}^2+a f \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}^2}{-\sqrt {a} c e+2 \sqrt {a} b f+2 c d \text {$\#$1}-b e \text {$\#$1}-4 a f \text {$\#$1}+3 \sqrt {a} e \text {$\#$1}^2-2 d \text {$\#$1}^3}\&\right ]}{f} \]

input
Integrate[Sqrt[a + b*x + c*x^2]/(d + e*x + f*x^2),x]
 
output
(2*Sqrt[c]*ArcTanh[(Sqrt[c]*x)/(-Sqrt[a] + Sqrt[a + x*(b + c*x)])] + RootS 
um[c^2*d - b*c*e + b^2*f + 2*Sqrt[a]*c*e*#1 - 4*Sqrt[a]*b*f*#1 - 2*c*d*#1^ 
2 + b*e*#1^2 + 4*a*f*#1^2 - 2*Sqrt[a]*e*#1^3 + d*#1^4 & , (-(c^2*d*Log[x]) 
 + b*c*e*Log[x] - b^2*f*Log[x] + a*c*f*Log[x] + c^2*d*Log[-Sqrt[a] + Sqrt[ 
a + b*x + c*x^2] - x*#1] - b*c*e*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x* 
#1] + b^2*f*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1] - a*c*f*Log[-Sqrt 
[a] + Sqrt[a + b*x + c*x^2] - x*#1] - 2*Sqrt[a]*c*e*Log[x]*#1 + 2*Sqrt[a]* 
b*f*Log[x]*#1 + 2*Sqrt[a]*c*e*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1] 
*#1 - 2*Sqrt[a]*b*f*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1]*#1 + c*d* 
Log[x]*#1^2 - a*f*Log[x]*#1^2 - c*d*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - 
 x*#1]*#1^2 + a*f*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1]*#1^2)/(-(Sq 
rt[a]*c*e) + 2*Sqrt[a]*b*f + 2*c*d*#1 - b*e*#1 - 4*a*f*#1 + 3*Sqrt[a]*e*#1 
^2 - 2*d*#1^3) & ])/f
 
3.2.2.3 Rubi [A] (verified)

Time = 0.90 (sec) , antiderivative size = 491, normalized size of antiderivative = 1.14, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {1320, 1092, 219, 1365, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b x+c x^2}}{d+e x+f x^2} \, dx\)

\(\Big \downarrow \) 1320

\(\displaystyle \frac {c \int \frac {1}{\sqrt {c x^2+b x+a}}dx}{f}-\frac {\int \frac {c d-a f+(c e-b f) x}{\sqrt {c x^2+b x+a} \left (f x^2+e x+d\right )}dx}{f}\)

\(\Big \downarrow \) 1092

\(\displaystyle \frac {2 c \int \frac {1}{4 c-\frac {(b+2 c x)^2}{c x^2+b x+a}}d\frac {b+2 c x}{\sqrt {c x^2+b x+a}}}{f}-\frac {\int \frac {c d-a f+(c e-b f) x}{\sqrt {c x^2+b x+a} \left (f x^2+e x+d\right )}dx}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\sqrt {c} \text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{f}-\frac {\int \frac {c d-a f+(c e-b f) x}{\sqrt {c x^2+b x+a} \left (f x^2+e x+d\right )}dx}{f}\)

\(\Big \downarrow \) 1365

\(\displaystyle \frac {\sqrt {c} \text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{f}-\frac {\frac {\left (2 f (c d-a f)-\left (e-\sqrt {e^2-4 d f}\right ) (c e-b f)\right ) \int \frac {1}{\left (e+2 f x-\sqrt {e^2-4 d f}\right ) \sqrt {c x^2+b x+a}}dx}{\sqrt {e^2-4 d f}}-\frac {\left (2 f (c d-a f)-\left (\sqrt {e^2-4 d f}+e\right ) (c e-b f)\right ) \int \frac {1}{\left (e+2 f x+\sqrt {e^2-4 d f}\right ) \sqrt {c x^2+b x+a}}dx}{\sqrt {e^2-4 d f}}}{f}\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {\sqrt {c} \text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{f}-\frac {\frac {2 \left (2 f (c d-a f)-\left (\sqrt {e^2-4 d f}+e\right ) (c e-b f)\right ) \int \frac {1}{4 \left (4 a f^2-2 b \left (e+\sqrt {e^2-4 d f}\right ) f+c \left (e+\sqrt {e^2-4 d f}\right )^2\right )-\frac {\left (4 a f-b \left (e+\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt {e^2-4 d f}\right )\right ) x\right )^2}{c x^2+b x+a}}d\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {c x^2+b x+a}}}{\sqrt {e^2-4 d f}}-\frac {2 \left (2 f (c d-a f)-\left (e-\sqrt {e^2-4 d f}\right ) (c e-b f)\right ) \int \frac {1}{4 \left (4 a f^2-2 b \left (e-\sqrt {e^2-4 d f}\right ) f+c \left (e-\sqrt {e^2-4 d f}\right )^2\right )-\frac {\left (4 a f-b \left (e-\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right ) x\right )^2}{c x^2+b x+a}}d\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {c x^2+b x+a}}}{\sqrt {e^2-4 d f}}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\sqrt {c} \text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{f}-\frac {\frac {\left (2 f (c d-a f)-\left (\sqrt {e^2-4 d f}+e\right ) (c e-b f)\right ) \text {arctanh}\left (\frac {4 a f+2 x \left (b f-c \left (\sqrt {e^2-4 d f}+e\right )\right )-b \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}-\frac {\left (2 f (c d-a f)-\left (e-\sqrt {e^2-4 d f}\right ) (c e-b f)\right ) \text {arctanh}\left (\frac {4 a f+2 x \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right )-b \left (e-\sqrt {e^2-4 d f}\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}}{f}\)

input
Int[Sqrt[a + b*x + c*x^2]/(d + e*x + f*x^2),x]
 
output
(Sqrt[c]*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/f - (-((( 
2*f*(c*d - a*f) - (c*e - b*f)*(e - Sqrt[e^2 - 4*d*f]))*ArcTanh[(4*a*f - b* 
(e - Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e - Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2 
]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]]* 
Sqrt[a + b*x + c*x^2])])/(Sqrt[2]*Sqrt[e^2 - 4*d*f]*Sqrt[c*e^2 - 2*c*d*f - 
 b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]])) + ((2*f*(c*d - a*f) - 
(c*e - b*f)*(e + Sqrt[e^2 - 4*d*f]))*ArcTanh[(4*a*f - b*(e + Sqrt[e^2 - 4* 
d*f]) + 2*(b*f - c*(e + Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c*e^2 - 2*c 
*d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x 
^2])])/(Sqrt[2]*Sqrt[e^2 - 4*d*f]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + 
 (c*e - b*f)*Sqrt[e^2 - 4*d*f]]))/f
 

3.2.2.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1320
Int[Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]/((d_) + (e_.)*(x_) + (f_.)*(x_)^ 
2), x_Symbol] :> Simp[c/f   Int[1/Sqrt[a + b*x + c*x^2], x], x] - Simp[1/f 
  Int[(c*d - a*f + (c*e - b*f)*x)/(Sqrt[a + b*x + c*x^2]*(d + e*x + f*x^2)) 
, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 
- 4*d*f, 0]
 

rule 1365
Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + ( 
e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Sim 
p[(2*c*g - h*(b - q))/q   Int[1/((b - q + 2*c*x)*Sqrt[d + e*x + f*x^2]), x] 
, x] - Simp[(2*c*g - h*(b + q))/q   Int[1/((b + q + 2*c*x)*Sqrt[d + e*x + f 
*x^2]), x], x]] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0 
] && NeQ[e^2 - 4*d*f, 0] && PosQ[b^2 - 4*a*c]
 
3.2.2.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1546\) vs. \(2(376)=752\).

Time = 0.88 (sec) , antiderivative size = 1547, normalized size of antiderivative = 3.59

method result size
default \(\text {Expression too large to display}\) \(1547\)

input
int((c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x,method=_RETURNVERBOSE)
 
output
-1/(-4*d*f+e^2)^(1/2)*(1/2*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+4/f*(-c 
*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*(-b*f*(-4* 
d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1 
/2)+1/2/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*ln((1/2/f*(-c*(-4*d*f+e^2)^(1/2) 
+b*f-c*e)+c*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))/c^(1/2)+((x+1/2*(e+(-4*d*f+e 
^2)^(1/2))/f)^2*c+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^ 
2)^(1/2))/f)+1/2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b 
*e*f-2*c*d*f+c*e^2)/f^2)^(1/2))/c^(1/2)-1/2*(-b*f*(-4*d*f+e^2)^(1/2)+(-4*d 
*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2*2^(1/2)/((-b*f*(-4*d*f+ 
e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)* 
ln(((-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+ 
c*e^2)/f^2+1/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2 
))/f)+1/2*2^(1/2)*((-b*f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2 
-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c+4 
/f*(-c*(-4*d*f+e^2)^(1/2)+b*f-c*e)*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*(-b* 
f*(-4*d*f+e^2)^(1/2)+(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f 
^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)))+1/(-4*d*f+e^2)^(1/2)*(1/2*(4 
*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c+4*(c*(-4*d*f+e^2)^(1/2)+b*f-c*e)/f* 
(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+2*(b*f*(-4*d*f+e^2)^(1/2)-(-4*d*f+e^2)^( 
1/2)*c*e+2*a*f^2-b*e*f-2*c*d*f+c*e^2)/f^2)^(1/2)+1/2*(c*(-4*d*f+e^2)^(1...
 
3.2.2.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b x+c x^2}}{d+e x+f x^2} \, dx=\text {Timed out} \]

input
integrate((c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="fricas")
 
output
Timed out
 
3.2.2.6 Sympy [F]

\[ \int \frac {\sqrt {a+b x+c x^2}}{d+e x+f x^2} \, dx=\int \frac {\sqrt {a + b x + c x^{2}}}{d + e x + f x^{2}}\, dx \]

input
integrate((c*x**2+b*x+a)**(1/2)/(f*x**2+e*x+d),x)
 
output
Integral(sqrt(a + b*x + c*x**2)/(d + e*x + f*x**2), x)
 
3.2.2.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a+b x+c x^2}}{d+e x+f x^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate((c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*d*f-e^2>0)', see `assume?` for 
 more deta
 
3.2.2.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a+b x+c x^2}}{d+e x+f x^2} \, dx=\text {Exception raised: TypeError} \]

input
integrate((c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument Type
 
3.2.2.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b x+c x^2}}{d+e x+f x^2} \, dx=\int \frac {\sqrt {c\,x^2+b\,x+a}}{f\,x^2+e\,x+d} \,d x \]

input
int((a + b*x + c*x^2)^(1/2)/(d + e*x + f*x^2),x)
 
output
int((a + b*x + c*x^2)^(1/2)/(d + e*x + f*x^2), x)